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Online learning with ensembles

R. Urbanczik
Neural Computing Research Group, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom

~Received 8 February 2000!

Supervised online learning with an ensemble of students randomized by the choice of initial conditions is
analyzed. For the case of the perceptron learning rule, asymptotically the same improvement in the generali-
zation error of the ensemble compared to the performance of a single student is found as in Gibbs learning. For
more optimized learning rules, however, using an ensemble yields no improvement. This is explained by

showing that for any learning rulef a transformf̃ exists, such that a single student usingf̃ has the same
generalization behavior as an ensemble off students.
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Online learning, where each training example is presen
just once to the student, has proved to be a very succe
paradigm in the study of neural networks using metho
from statistical mechanics@1#. On the one hand, it makes
possible to rigorously@2# analyze a wide range of learnin
algorithms. On the other hand, online algorithms can in so
cases yield a performance that equals that of the Bayes
timal inference procedure, e.g., asymptotically, when
probability of the data is a smooth function of the paramet
of the network@3#.

Some problems, however, do remain. For nonsmo
cases, which arise, e.g., in classification tasks, the Bayes
timal procedure yields a superior generalization perf
mance, even asymptotically, to that of online algorith
@4,5#. Also, even for smooth problems, the online dynam
often has suboptimal stationary points arising from symm
tries in the network architecture. Then the sample s
needed to reach the asymptotic regime will scale faster t
linearly with the number of free parameters if no pri
knowledge is built into the initial conditions of the dynami
@6#.

It thus seems of interest to ask which extensions of
online framework make sense. The findings quoted ab
indicate that, using a reasonable update rule, it is not poss
to store all of the information contained in a training e
ample into a single weight vector. Thus one should stu
learning systems that have a larger state space than ju
single weight vector. Here we shall consider using an
semble of students randomized by the choice of initial c
dition. Focusing on classification problems, we first analy
realizable learning in a perceptron. So the learning dynam
is based on a training set ofaN input/output pairs (jm,tm),
jmPRN, and tm5sgn(BTjm), where B is the unknown
N-dimensional weight vector defining the teacher. For c
venience we assumeuBu51. The ensemble consists ofK
students and at time stepm the i-th student is characterize
by a weight vectorJi

mPRN. When classifying a new inputj
one may then use the majority vote of theK students instead
of relying on the output sgn(Ji

mTj) of just a single student.
The dynamics of thei-th student takes the form

Ji
m115Ji

m1jmN21f ~m/N,uJi
mu,BTjm,Ji

mTjm!, ~1!

and the choice of the real valued functionf defines the learn-
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ing rule. Reasonably,f may only depend on the third argu
mentBTjm via its signtm, but it is not helpful to make this
explicit in the notation. Note that all of the members of t
ensemble learn from the same training examples, and th
are presented in the same order.

Assuming that the components of the example inputs
independent random variables picked from the normal dis
bution onR, the state of the ensemble can be described
the order parameters Ri(a)5BTJi

aN and Qi j (a)
5Ji

aNTJj
aN . For a reasonable choice off @2#, the order pa-

rameters will be nonfluctuating for largeN and satisfy the
following differential equations:

Ṙi5^y f i
a&xi ,y ,

Q̇i j 5^xi f j
a1xj f i

a1 f i
a f j

a&xi ,xj ,y , ~2!

f i
a[ f ~a,Qii

1/2,y,xi !,

wherey and thexi are zero mean Gaussian random variab
with covarianceŝ xiy&5Ri and ^xixj&5Qi j . We shall only
consider the case where the initial valuesJi

0 are picked in-
dependently from the uniform distribution on a sphere w
radiusAP(0). Then for largeN the initial conditions for Eq.
~2! areRi(0)5Qi j (0)50 for iÞ j andQii (0)5P(0). These
conditions are invariant under permutations of the site in
cesi and this also holds for the system of differential equ
tions ~2!. Thus this site symmetry will be preserved for a
time and we need only consider the three order parame
R(a)5Ri(a), P(a)5Qii (a), and Q(a)5Qi j (a) for i
Þ j . Since the length of the students is of little interest, it w
often be convenient to consider the normalized overl
r (a)5R(a)/AP(a) andq(a)5Q(a)/P(a).

A new inputj, picked from the same distribution as th
training inputs, will be classified by the ensemble using
majority vote, that is, by

s~j!5sgnF(
i 51

K

sgn~Ji
aNTj!G . ~3!

As an alternative to using a majority vote, one might co
sider constructing a new classifier by averaging the wei
vectors of the students, settingJ̄aN5K21( iJi

aN . As in the
1448 ©2000 The American Physical Society
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Gibbs theory@7#, a simple application of the law of larg
numbers yields proof that the two classifiers are equivalen
the largeK limit if q(a)5O(1); that is,s(j)5sgn(J̄aNj)
for almost all inputs. In the sequel we shall only consider
largeK limit, assuming thatK!N so that the fluctuations in
the site symmetry of the initial conditions can be ignore
The generalization erroree of the ensemble, which is
the probability of misclassifyingj, is then given by
ee5e@r (a)/Aq(a)# where

e~x!5
1

p
arccosx. ~4!

Similarly, the generalization error of a single student in t
ensemble ises5e„r (a)….

We shall first consider a soft version of the perceptr
learning rule:

f 5huJi
muHS tm

k

A12k2

Ji
mTjm

uJi
mu D tm, ~5!

whereH(x)5 1
2 erfc(x/A2) andh is a time dependent learn

ing rate. Fork50 this reduces to Hebbian learning, where
k51 yields the perceptron learning rule. Note, however, t
the uJi

mu prefactor makes the dynamics invariant with resp
to the scaling of the student weight vectors. From Eq.~2! one
obtains for the order parameters

ṙ 5
h

A2p
~12r 2!2

h2

2
r @e~kr !2 1

2 e~k2!#,

q̇5
2h

A2p
r ~12q!1h2S ~12q!e~kr !2 1

2 e~k2q!1
q

2
e~k2! D .

~6!

We first consider the perceptron learning rule, i.e.,k51.
In the limit r ,q→1 one findsṙ;hA2/p(12r )2h2e(r )/2
andq̇;hA2/p(12q)2h2e(q)/2; that is,r andq satisfy the
same differential equation. If the learning rate schedule
such that this limit is reached, this means that (12r )/
(12q) will approach 1 for largea. Hence asymptotically
ee;e„Ar (a)…, and the same improvement by a factor
1/A2 in the generalization error of the ensemble compare
single student performance is found as in Gibbs learn
@Interestingly, the same asymptotic relationship betweenee
and es also holds for the Adatron learning rulef 5
2Q(2tmJi

mTjm)Ji
mTjm.# The optimal asymptote of the

learning rate schedule ish;2A2p/a and this yields anee

;(2A2)/pa'0.90/a decay of the ensemble generalizati
error. This is very close to the 0.88/a decay found for the
optimal single student algorithm@5#.

We next consider improving the performance by tuningk.
From Eq.~6! one easily sees that single student performa
is optimized when k5r . Asymptotically, this may be
achieved by settingk;124/a2 and choosing the optima
learning schedule that is asymptotically the same as the
for the standard perceptron learning rule. Then alread
single student achieveses;(2A2)/pa, which is the same
largea behavior as the ensemble in thek51 case. Unfortu-
in
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natelyr andq now have a different asymptote and one fin
12q!12r . So for all practical purposes the ensemb
collapses to a single point, and for largea to leading order
ee;es .

It is of course not clear whether optimizing single stude
performance is a good idea, and we thus analyze more
neric schedules, settingk;12(l/a)2. Figure 1 then, how-
ever, shows that the two cases considered above are op
for ensemble and, respectively, single student performan

The above analysis of the soft perceptron rule sugg
that while for some rules using an ensemble does sign
cantly improve on single student performance, for more
timized rules this may no longer be the case. We shall n
prove that the generalization error of the optimal single s
dent learning rule is also a lower bound of the ensem
performance for any learning rulef. To achieve this, a learn
ing rule f̃ will be given that for each pattern yields the e
semble average off. Then a single studentJ̃m using f̃ will
have generalization behavior equal to that of a large
semble of students usingf. The dynamics forJ̃m may be
written as

J̃m115 J̃m1jmN21 f̃ ~m/N,BTjm,J̃mT
jm!, ~7!

where f̃ is the following integral transform off:

f̃ ~a,y,x̃!5^ f @a,P~a!1/2,y,x̃1„P~a!2Q~a!…(1/2)z#&z .
~8!

Here the distribution ofz is normal. The entire procedure i
quite intuitive: J̃m represents the center of mass of the e
semble andJ̃mT

jm1„P(a)2Q(a)…(1/2)z is a guess for the
value of the hidden fieldJi

mTjm of one of the ensemble mem
bers. For largeK the distribution of the last two quantitie
will be the same, and the ensemble average off can be reli-
ably predicted. Further, note that the class of soft percep
rules ~5! is invariant under the integral transform~8! since

FIG. 1. Asymptotes of the soft perceptron learning rule. T
generalization error of the ensemble decays asee;ge /a, and for a
single studentes;gs /a. The dependence ofge andgs on the pa-
rameterl that controls the softness of the learning rule viak;1
2(l/a)2, is shown in the plot. The learning rate schedule ish
;2A2p/a. For all values ofl, this schedule optimizes both singl
student and ensemble performance. Forl.1 the students in the
ensemble correlate quickly with increasinga, and using an en-
semble asymptotically yields no improvement over single stud
performance.
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^H(a1bz)&z5H(a/A11b2). This explains why optimizing
single student and optimizing ensemble performance wi
this class yields the same generalization behavior.

To demonstrate thatJ̃m does indeed emulate the larg
ensemble, consider the order parametersR̃(a)5BTJ̃aN and
Q̃(a)5uJ̃aNu2. We shall start with J̃050; thus R̃(0)
5R(0)5Q̃(0)5Q(0)50, and it will suffice to show that
the pairR̃,Q̃ satisfies an identical differential equation as t
pair R,Q. From Eq.~2! we obtain for Q:

Q̇5^2xi f „a,P~a!1/2,y,xj…

1 f „a,P~a!1/2,y,xi…f „a,P~a!1/2,y,xj…&y,xi ,xj
, ~9!

wherei andj are any two different indices. The Gaussiansxi
andxj may be rewritten in terms of normal random variab
zi ,zj andz, independent of each other and ofy, as

xi5AP2Qzi1AQ2R2z1Ry,

xj5AP2Qzj1AQ2R2z1Ry. ~10!

Carrying out the integrations overzi andzj in Eq. ~9! yields
Q̇5^2x̃ f̃ (a,y,x̃)1 f̃ (a,y,x̃)2&y,z , where x̃[AQ2R2z

1Ry. The variance ofx̃ is Q and its covariance withy is R.

Applying Eq. ~2! to J̃m yields Q̇̃5^2x̃ f̃ (a,y,x̃)
1 f̃ (a,y,x̃)2&y,x̃ , where the variance ofx̃ is Q̃ and its cova-
riance withy is R̃. ThusQ andQ̃ satisfy the same differen
tial equation and an analogous argument shows that the s
holds forR and R̃.

Next consider more general architectures than the sim
perceptron. It is easy to generalize the construction to
case of a tree committee machine: one just has to carry
an integration analogous to Eq.~8! for each branch of the
tree. The case of the tree parity machine, however, is m
involved since due to a gauge symmetry, students with
fering weight vectors can implement the same function. T
averaging the output of the ensemble members@Eq. ~3!# may
no longer be equivalent to averaging the weight vectors. D
to the permutation symmetry of the hidden units, the ana
gous problem arises in fully connected committee machin
But in both cases it is straightforward to break the symme
in a formal way by adding a small deterministic drift term
the formB( j )dN21 to the update equations~1! of each hid-
den unitj. Then ford.0 the same procedure as for the tr
committee will yield an equivalent single student rule. In t
end, one will of course want to take the limitd→0. This
limit, however, in the case of a training set size that is on
order of the number of free parameters in a single stud
yields pathological behavior on the single student level:
the parity machine only trivial generalization will result@8#,
and for the connected committee each student is stuck
badly generalizing unspecialized state where only the m
of the weight vectors of the teacher is learned@6#. Thus for
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the parity machine an ensemble of such students will sh
no generalization, and for the connected committee it w
show no specialization.

So the above procedure does not allow us to make
statement about the equivalence between ensemble
single student performance for the large training sets nee
to achieve good generalization. It does, however, show
the pathological divergence of the training times, which
sults from the symmetries, cannot be overcome by the us
an ensemble.

Let us next consider whether there is a better way to
courage diversity in the ensemble than just choosing dif
ent initial conditions. The most promising approach seem
be to randomize the presentation order of the examples
while all of the students use the same training set, th
sample independently from this set. Now even if the sa
pling is done without replacement, the joint field distributio
will no longer be Gaussian since correlations between
dents and inputs arise when calculating the overlap betw
different ensemble members. So it is far from clear how
emulate the ensemble behavior by using a single student.
for exactly the same reason the analysis of this scenari
very involved and will require the techniques~and approxi-
mations! used in the study of online learning when the tra
ing set is sampled with replacement@9,10#. Further, from a
practical point of view, to permute the presentation order,
entire training set has to be stored somewhere, and one m
ask whether such an algorithm should still be regarded
being online. Consequently, randomizing the order of p
sentation makes much more sense in the case where
training set is sampled with replacement.

The above results for the standard online scenario are
tirely analogous to the findings in the case of batch learni
There, in a Bayesian framework, if one uses the subopti
strategy of simply sampling the posterior, generalization p
formance is improved by using an ensemble and the la
ensemble yields Bayes optimal performance@4#. However, it
is possible to construct an optimal potential and also have
single student minimizing this potential display Bayes op
mal generalization@11#. While in the online learning prob-
lems considered in this paper Bayes optimal generaliza
cannot be achieved with a single student, as in the ba
case, an ensemble cannot improve on optimal single stu
performance. This is somewhat surprising since the
problem in online learning is to find a reasonable update r
that compresses the information about the teacher into
N-dimensional state vector of the student while sequenti
scanning the training set. But when using an ensemble
largerKN dimensional state space is available for storing
information. So the equivalence between optimal ensem
and single student performance shows that an ensemb
not a efficient way of using this larger state space. This ra
the interesting question whether there are more effic
strategies of utilizing a large state space.
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