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Online learning with ensembles
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Supervised online learning with an ensemble of students randomized by the choice of initial conditions is
analyzed. For the case of the perceptron learning rule, asymptotically the same improvement in the generali-
zation error of the ensemble compared to the performance of a single student is found as in Gibbs learning. For
more optimized learning rules, however, using an ensemble yields no improvement. This is explained by
showing that for any learning rulea transformf exists, such that a single student usihdas the same
generalization behavior as an ensemblé students.

PACS numbegs): 87.10+e

Online learning, where each training example is presentethg rule. Reasonablyf, may only depend on the third argu-
just once to the student, has proved to be a very successfoientBT&# via its sign7#, but it is not helpful to make this
paradigm in the study of neural networks using methodsxplicit in the notation. Note that all of the members of the
from statistical mechanidsl]. On the one hand, it makes it ensemble learn from the same training examples, and these
possible to rigorously2] analyze a wide range of learning are presented in the same order.
algorithms. On the other hand, online algorithms can in some Assuming that the components of the example inputs are
cases yield a performance that equals that of the Bayes omdependent random variables picked from the normal distri-
timal inference procedure, e.g., asymptotically, when théution onR, the state of the ensemble can be described by
probability of the data is a smooth function of the parametershe order parameters R;(a)=BTJ*™ and Qij(@)
of the network(3]. =JNTgeN For a reasonable choice 6{2], the order pa-

Some problems, however, do remain. For nonsmoothameters will be nonfluctuating for large and satisfy the
cases, which arise, e.g., in classification tasks, the Bayes ORsllowing differential equations:

timal procedure yields a superior generalization perfor-

mance, even asymptotically, to that of online algorithms Ri:<yfi‘1>x_ v

[4,5]. Also, even for smooth problems, the online dynamics 8

often has suboptimal stationary points arising from symme- Ny fd .y £ fafa

tries in the network architecture. Then the sample size Qi = O+ ) Xjyo 2)
needed to reach the asymptotic regime will scale faster than o 12

linearly with the number of free parameters if no prior fir=f(a,Qi"y. X,

Fg]owledge is built into the initial conditions of the dynamics wherey and thex; are zero mean Gaussian random variables

with covariancegx;y)=R; and(x;x;)=Q;; . We shall only

It thus seems of interest to ask which extensions of the onsider the case where the initial valusare picked in-
online framework make sense. The findings quoted abov i IR P .
ependently from the uniform distribution on a sphere with

indicate that, using a reasonable update rule, it is not possibie™" I .
to store all of the information contained in a training ex- '2diusyP(0). Then for largeN the initial conditions for Eq.

ample into a single weight vector. Thus one should study?) &€Ri(0)=Q;;(0)=0 fori#] andQ;;(0)=P(0). These

learning systems that have a larger state space than justcgnditions are invariant under permutations of the site indi-

single weight vector. Here we shall consider using an encesi and this also holds for the system of differential equa-

semble of students randomized by the choice of initial conlions (2). Thus this site symmetry will be preserved for all

dition. Focusing on classification problems, we first analyzeiMe and we need only consider the three order parameters

realizable learning in a perceptron. So the learning dynamic§(@) =Ri(@), P(a)=Qji(@), and Q(a)=Qj(e) for i

is based on a training set @M input/output pairs £, 74) #j. Since the length of the students is of little interest, it will
#eRN, and 7#=sgn@®T¢), where B is the unk,novx;n often be convenient to consider the normalized overlaps
N-dimensional weight vector defining the teacher. For cond (@) =R(a)/VP(a) andq(a)=Q(a)/P(a).

venience we assumeB|=1. The ensemble consists &f A new inputé, picked from the same distribution as the

students and at time step the i-th student is characterized fraining inputs, will be classified by the ensemble using a
by a weight vectod! e EN. When classifying a new inpyt ~ majority vote, that is, by

one may then use the majority vote of tkestudents instead K
of relying on the output sgadf‘T¢) of just a single student. U(g)zsg,-{ Z Sgr(JiaNTg) ] 3
The dynamics of thé-th student takes the form i=1
JiMJrl:Jiu+gﬂN—lf(M/N,Niul,BTg,u'JiMTgﬂ), (1) As an alternative to using a majority vote, one might con-

sider constructing a new classifier by averaging the weight
and the choice of the real valued functibdefines the learn- vectors of the students, settidgN=K *2,J*N. As in the
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Gibbs theory[7], a simple application of the law of large L1
numbers yields proof that the two classifiers are equivalent in
the largeK limit if g(a)=0(1); that is, o(&) =sgn@*N¢) 1.05
for almost all inputs. In the sequel we shall only consider the G
largeK limit, assuming thak <N so that the fluctuations in 1
the site symmetry of the initial conditions can be ignored.
The generalization errofe, of the ensemble, which is 0.95 Je =75
the probability of misclassifyingé, is then given by Ye
=¢[r(a)/\q(a)] where 09
1 0 0.5 1 1.5 2 2.5 3
€(X) = —arcco«. (4) N
o

Similarly, the generalization error of a single student in the F'G- 1. Asymptotes of the soft perceptron learning rule. The
ensemble is,= e(r () generalization error of the ensemble decaysasy./«, and for a
< .

We shall first consider a soft version of the perceptronSlngle students~ ys/a. The dependence of, and ys on the pa-

- . rameter\ that controls the softness of the learning rule kial
learning rule:

— (N a)?, is shown in the plot. The learning rate schedulepis
J"Tg“ ~ 227l . For all values of, this schedule optimizes both single
f= 77|J{L|H " (5) student and ensemble performance. korl the students in the
\/1 k2 |J“| ensemble correlate quickly with increasing and using an en-
semble asymptotically yields no improvement over single student
whereH(x) = Lerfc(x/\/2) and is a time dependent learn- performance.

ing rate. Fork=0 this reduces to Hebbian learning, whereas
k=1 yields the perceptron learning rule. Note, however, thabatelyr andq now have a different asymptote and one finds

the|J#| prefactor makes the dynamics invariant with respect1 q<1l-r. So for all practical purposes the ensemble
to the scaling of the student weight vectors. From @yone  collapses to a single point, and for largeto leading order
obtains for the order parameters €e™ Es- o
It is of course not clear whether optimizing single student
. n 7 performance is a good idea, and we thus analyze more ge-
r=——(1-r?)——r[e(kr)—e(k?)], neric schedules, setting~1— (\/a)?. Figure 1 then, how-
V2m 2 ever, shows that the two cases considered above are optimal

for ensemble and, respectively, single student performance.

- en 1 The above analysis of the soft perceptron rule suggests
Q_Er(l_anz (1_Q)6(kr)_Ee(kquEe(kz) * that while for some rules using an ensemble does signifi-
(6) cantly improve on single student performance, for more op-

timized rules this may no longer be the case. We shall now

We first consider the perceptron learning rule, ikes,1. prove that the generalization error of the optimal single stu-
In the limit r,q—1 one ﬁnds'rNW\/T(l_r)_n e(r)/2  dent learning rule is also a lower bound of the ensemble

andq 77\/%(1 q)— 72€(q)/2: that is,r andq satisfy the performance for any learning rufeTo achieve this, a learn-
same differential equation. If the learning rate schedule i$"9 rule T will be given that for each pattern yields the en-
such that this limit is reached, this means that-¢)/  semble average df Then a single student* usingT will
(1—q) will approach 1 for largex. Hence asymptotically, have generalization behavior equal to that of a large en-
€.~ €(\Jr(a)), and the same improvement by a factor of semble of students usinj The dynamics forJ* may be
1/1/2 in the generalization error of the ensemble compared tavritten as

single student performance is found as in Gibbs learning.

[Interestingly, the same asymptotic relationship betwegn e r=TJeg eeNT I (/N BT ER IR g, 7)
and e; also holds for the Adatron learning rulé=

—O(—IFTEM IETE ] The optimal asymptote of the wheref is the following integral transform of

learning rate schedule is~2+2x/a and this yields are, o B

~(242)/ma~0.90k decay of the ensemble generalization T(a,y,X)=(f[a,P(a)"%y,x+(P(a)—Q(a))*z]),.

error. This is very close to the 0.88/decay found for the (8
0pwea:]zgggﬁnsstﬁj%?r::nesgoﬁlrgg'ﬁge performance by turng Here the distribution of is normal. The entire procedure is
From Eq.(6) one easily sees that single student performancéluite intuitive: J” represents the center of mass of the en-
is optimized whenk=r. Asymptotlcally, this may be semble andi* &*+ (P(a)—Q(a))¥?z is a guess for the
achieved by settindk~1—4/a® and choosing the optimal value of the hidden field“T¢* of one of the ensemble mem-
learning schedule that is asymptotically the same as the origers. For largeK the distribution of the last two quantities
for the standard perceptron learning rule. Then already &ill be the same, and the ensemble averagéazin be reli-
single student achieves,~(2/2)/ma, which is the same ably predicted. Further, note that the class of soft perceptron
large o behavior as the ensemble in tke1 case. Unfortu- rules (5) is invariant under the integral transfor(8) since
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(H(a+b2)),=H(a/\/1+b?). This explains why optimizing the parity machine an ensemble of such students will show
single student and optimizing ensemble performance withimo generalization, and for the connected committee it will
this class yields the same generalization behavior. show no specialization.

To demonstrate thal* does indeed emulate the large So the above procedure_ does not allow us to make any
statement about the equivalence between ensemble and

H > _pTiaN
ensemble, consider the order parameRfa)=B'J“" and  gjngle student performance for the large training sets needed
Q(a)=[3*N|2. We shall start withJ°=0; thus R(0) to achieve good generalization. It does, however, show that
=R(0)=0(0)=Q(0)=0, and it will suffice to show that the pathological divergence of the training times, which re-
the pairﬁfg satisfies an identical differential equation as theSUItS from the symmetries, cannot be overcome by the use of

. . i an ensemble.
pair R,Q. From Eq.(2) we obtain for Q: Let us next consider whether there is a better way to en-

" 12 courage diversity in the ensemble than just choosing differ-
Q=(2xif(a,P(a)™y. X)) ent initial conditions. The most promising approach seems to
+f(a,P(@) Y2y, x)F(a,P() Y2y, %))y x x»  (9) be to randomize the presentation order of the examples. So
o while all of the students use the same training set, they
sample independently from this set. Now even if the sam-
SpIing is done without replacement, the joint field distribution
will no longer be Gaussian since correlations between stu-
dents and inputs arise when calculating the overlap between
different ensemble members. So it is far from clear how to
=\P—-0z+ —R%z+ ; . .
x=VP—Qz+\Q-RZ+RYy, emulate the ensemble behavior by using a single student. But
for exactly the same reason the analysis of this scenario is
X] G Q7+ VQ-RZ+Ry. (10 very involved and will require the techniquésnd approxi-
Carrying out the integrations ovey andz; in Eqg. (9) yields _mat|0nts). used ml tge Sfiﬁdy Olf 0”“”;;?&”";9 \;\;}henfthe train-
- ~ % ~\2 ~_ A o2 ing set is sampled with replacem . Further, from a
Q <2Xf(a’y’),()+f(al.ij) %3 ) Where' X= Q _R z practical point of view, to permute the presentation order, the
+Ry. The variance ok is Q~and its covagancelvlttx '5~R- entire training set has to be stored somewhere, and one might
Applying Egq. (2) to J* vyields Q=(2xf(a,y,x)  ask whether such an algorithm should still be regarded as
+"f(a,y,7()2>y,;, where the variance of is Q and its cova- Peing online. Consequently, randomizing the order of pre-

riance withy is R. ThusQ and® satisfy the same differen- sentation makes much more sense in the case where the

tial equation and an analogous argument shows that the sarﬂg'n'ng set is sampled with replacement._ .
holds forR and R The above results for the standard online scenario are en-
olds forR andR.

. . . tirely analogous to the findings in the case of batch learning.
Next consider more general architectures than the simpl¢pere in 4 Bayesian framework, if one uses the suboptimal
perceptron. It is easy to generallze the.constructlon to th%trategy of simply sampling the posterior, generalization per-
case of a tree committee machine: one just has to carry oyt mance is improved by using an ensemble and the large
an integration analogous to EC&) for e_ach branch of_ the  ansemble yields Bayes optimal performafiék However, it
tree. The case of the tree parity machine, however, is morg y,ssible to construct an optimal potential and also have the
involved since due to a gauge symmetry, students with difsingje student minimizing this potential display Bayes opti-
fering vye|ght vectors can implement the same function. Thug, generalizatiof11]. While in the online learning prob-
averaging the output of the ensemble membECs (3)J may  |ems considered in this paper Bayes optimal generalization
no longer be equivalent to averaging the weight vectors. Dugannot be achieved with a single student, as in the batch
to the permutation symmetry of the hidden units, the analog,ge "an ensemble cannot improve on optimal single student
gous problem arises in fully connected committee machinesyeformance. This is somewhat surprising since the key
Butin both cases it is straightforward to break the symmetry, opjem in online learning is to find a reasonable update rule
n aformal(j\;vay_bly adding a small deterministic drift term of 3¢ compresses the information about the teacher into the
the formB"’6N"" to the update equatiorid) of each hid-  n_gimensional state vector of the student while sequentially
den unitj. Then for6>0 the same procedure as for the treegcanning the training set. But when using an ensemble, a
committee will yield an equivalent single student rule. In thejargerk N dimensional state space is available for storing the
end, one will of course want to take the limit—0. This jrformation. So the equivalence between optimal ensemble
limit, however, in the case of a training se_t size .that is on theyg single student performance shows that an ensemble is
order of the number of free parameters in a single studentyy 5 efficient way of using this larger state space. This raises
yields pathological behavior on the single student level: Fogpa interesting question whether there are more efficient

the parity machine only trivial generalization will res{#], strategies of utilizing a large state space.
and for the connected committee each student is stuck in a

badly generalizing unspecialized state where only the mean It is a pleasure to acknowledge helpful discussions with
of the weight vectors of the teacher is leardédl Thus for Manfred Opper and David Saad.

wherei andj are any two different indices. The Gaussians
andx; may be rewritten in terms of normal random variable
z;,z; andz, independent of each other andyofas
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